Fibre Systems Autumn 2016

FEATURE

The continued case for NZ-DS fibre in lower data rate applications

Much attention has been directed recently towards the need of national network operators to enhance the capacity of their long-haul networks in order to deliver data-heavy services, such as streaming high-definition video services to a large broadband subscriber base. A significant part of overcoming bottlenecks is the deployment of 100 Gb/s, and increasingly 200 Gb/s, transceivers employing coherent detection technology. However, it must not be overlooked that not every network operator is in exactly the same business.

FEATURE

On-board optics: beyond pluggables

As befits its status as a computing giant, Microsoft’s musings about the internet’s future are poised to reshape the optical communication industry. In August 2015, following discussions with colleagues and suppliers, Brad Booth, principal engineer at Microsoft in Redmond, Washington, helped found the Consortium for On-Board Optics (COBO). The move answered a question: looking at network speeds of 400G and beyond, will networking equipment that uses faceplate pluggable optical modules continue to make sense?

FEATURE

How to clean fibre-optic connectors

We work in a young industry: in just 50 years, fibre capacity has increased astronomically. The theoretical has become practical with astonishing regularity. But for all the advance in speed there remains one weak link: contamination on fibre end faces. In the ‘good old days’ of megabits per second, a contaminated end face was not much of a concern. Today, insertion loss and reflectance problems are major concerns as speeds jump from gigabits-per-second to terabits and beyond.

FEATURE

Silicon photonics extends its reach

The optical communications market is undergoing a seismic shift. This is driven in part by the emerging role of internet content providers who have established themselves not only as leading users of interconnect technology, but also as a disruptive force aggressively transitioning the market toward a fast-paced cloud, software-driven, and data centre-optimised design model. The widespread adoption of cloud-based services is leading to a tremendous increase in deployed capacity and a fast ramp-up of 100 Gigabit Ethernet, small form factor, short-reach interconnects.

FEATURE

Breaking the glass ceiling

The optical fibres that crisscross our globe are often described as having ‘infinite capacity’, but that’s not strictly correct. While optical fibres do represent an extremely efficient communications channel – a single optical fibre can carry more information than all of the wireless spectrum combined – their capacity is not truly unlimited.

FEATURE

F is for FPGA

In a fast-changing world where product development cycles are becoming compressed into months rather than years, a company whose chips can be programmed and reprogrammed on the fly would appear to have a natural advantage. Enter Xilinx, the San Jose, California-headquartered developer of FGPAs. The F in FPGA stands for field, as in field-programmable gate array, but it could so easily stand for fast, flexible or future-proof – all of which are qualities that these devices possess.

Feature

Oleg Khaykin, CEO of Viavi Solutions, speaks candidly to Fibre Systems about how to compete in the challenging world of communications test and measurement

Feature

Hao Dong describes how innovative optical fibres and cabling could provide substantial benefits for connecting data centres across a wide range of distances

Feature

Richard Ednay considers whether fibre characterisation needs to be modified to suit modern optical communication systems that are likely to include coherent transmission

Feature

ECOC is the place to be to discover the latest technological and commercial innovations in optical components and networks. Here we highlight some of the exhibitors and events taking place in the exhibition hall.