Software-defined networks

FEATURE

Trains, planes and software-defined multilayer networks

Imagine you are in charge of your country’s public transportation. You have three divisions, busses, trains, and aeroplanes. Each division shares patterns of passenger traffic with each other, but otherwise operate independently. The population is generally satisfied with the level of service, even when switching between modes of transport, but you know that this is primarily due to the fact that your budgets have been generous enough to allow each division to build sufficient route capacity and frequency.

FEATURE

Self-service bandwidth

No self-respecting optical equipment vendor can afford to be without a well-considered strategy for software defined networking (SDN). Over the last 18 months or so, most of the major and second-tier vendors have announced how they intend to approach software control of the optical layer in carrier transport networks – which we will call transport SDN to distinguish it from the more well-developed application of SDN in data centre network environments.

Feature

Cost and compatibility can make a compelling case for pushing 100Gb/s bandwidth over a single optical channel, both as individual links and supporting 400Gb/s Ethernet, finds Andy Extance

Analysis and opinion
Analysis and opinion
Feature

Robin Mersh takes a look at how the industry is creating next-generation optical access fit for 5G

Feature

Technological advances to aid the increasing demand for bandwidth, on the path towards the terabit network, should lead to optical signals that are flexible and adaptive, like water, argues Dr Maxim Kuschnerov and Dr Yin Wang