Photonic devices built via standard CMOS process

Share this on social media:

Engineers have demonstrated that low power photonic devices can be fabricated using standard chip-making processes. The work was part of the U.S. Defense Advanced Research Projects Agency’s Photonically Optimised Embedded Microprocessors (POEM) project.

They have achieved what the researchers say is a major milestone in photonic technology. The work will be presented at this year’s Optical Fiber Communication (OFC) Conference and Exposition, being held from 9 to 13 March in San Francisco.

The two new devices – a modulator and a tunable filter – are as energy-efficient as some of the best devices around, the researchers say, and were built using a standard IBM advanced Complementary Metal-Oxide Semiconductor (CMOS) process – the same chip-making process used to build many commercially available chips, some of which are found in Sony's Playstation 3 and also in Watson.

‘As far as we know, we're the first ones to get silicon photonics natively integrated into an advanced CMOS process and to achieve energy efficiencies that are very competitive with electronics,’ said Mark Wade of the University of Colorado, Boulder, who will present his team’s work at OFC. Wade’s co-authors include researchers from the Massachusetts Institute of Technology and the University of California, Berkeley.

Researchers anticipate that photonics solutions will be at least 10 times more energy-efficient than electronics. Chip-to-chip communication links using these photonic devices could have at least 10 times higher bandwidth density, meaning they can transmit much more information using a smaller amount of space. That's because different optical signals can share the same optical wire, whereas sending multiple electrical signals either requires multiple electronic wires or schemes that require more chip space and energy.

But so far, Wade explains, photonic devices used in chip-to-chip communication have been primarily custom-built using specialised methods, limiting their commercial applicability. And devices that have been created with more standardised techniques rely on older technology, which limits their ability to compete with cutting-edge electronics

The ability to produce high-performing photonic devices using the CMOS process means chip designers will not have to be specialists to design photonic devices, Wade explained, which will hopefully accelerate the commercialisation of photonic technology.

‘IBM’s CMOS process has already been commercially proven to make high-quality microelectronics products,’ Wade said.

The two devices built by the researchers are key components for the communication link between a computer's central processing unit and its memory. A modulator converts electrical signals into optical signals. A tunable filter can pick out light signals of particular frequencies, allowing it to select a signal from multiple frequencies, each of which carries data. Used in conjunction with a photodetector, the filter converts optical signals to electrical signals.

But according to Wade, the significance of this advancement goes beyond this particular application: ‘This is a really nice first step for silicon photonics to take over some areas of technology where electronics has really dominated and to start building complex electronic/photonic systems that require dense integration.'

Recent News

15 March 2019

The TeraWave SCUBA150 optical fibre from OFS Optics has demonstrated that it can enable transport of 300Gb/s over a 14,000km link.

25 February 2019

A group of researchers from Universitat Politècnica de Catalunya in Barcelona, alongside Huawei, have re-tooled an artificial intelligence technique to improve efficiency in optical transport networks (OTNs).

21 December 2018

Rural broadband provider Gigaclear Networks is beefing up its backhaul network by deploying a 100G transport system powered by optical hardware and intelligent software from US vendor Ciena.

The 100G network will connect multiple countryside locations in the UK to enable Gigaclear’s internet service provider customers to offer advanced services, such as HD video streaming to business and residential end users.

06 September 2018

Scottish secondary school pupils at Kyle Academy secondary school in Ayr, Scotland, have benefited from next-generation high-speed wireless internet connectivity following the deployment by pureLiFi of its LiFi solutions, using light to establish wireless internet connections.