NEWS

Photonic devices built via standard CMOS process

Engineers have demonstrated that low power photonic devices can be fabricated using standard chip-making processes. The work was part of the U.S. Defense Advanced Research Projects Agency’s Photonically Optimised Embedded Microprocessors (POEM) project.

They have achieved what the researchers say is a major milestone in photonic technology. The work will be presented at this year’s Optical Fiber Communication (OFC) Conference and Exposition, being held from 9 to 13 March in San Francisco.

The two new devices – a modulator and a tunable filter – are as energy-efficient as some of the best devices around, the researchers say, and were built using a standard IBM advanced Complementary Metal-Oxide Semiconductor (CMOS) process – the same chip-making process used to build many commercially available chips, some of which are found in Sony's Playstation 3 and also in Watson.

‘As far as we know, we're the first ones to get silicon photonics natively integrated into an advanced CMOS process and to achieve energy efficiencies that are very competitive with electronics,’ said Mark Wade of the University of Colorado, Boulder, who will present his team’s work at OFC. Wade’s co-authors include researchers from the Massachusetts Institute of Technology and the University of California, Berkeley.

Researchers anticipate that photonics solutions will be at least 10 times more energy-efficient than electronics. Chip-to-chip communication links using these photonic devices could have at least 10 times higher bandwidth density, meaning they can transmit much more information using a smaller amount of space. That's because different optical signals can share the same optical wire, whereas sending multiple electrical signals either requires multiple electronic wires or schemes that require more chip space and energy.

But so far, Wade explains, photonic devices used in chip-to-chip communication have been primarily custom-built using specialised methods, limiting their commercial applicability. And devices that have been created with more standardised techniques rely on older technology, which limits their ability to compete with cutting-edge electronics

The ability to produce high-performing photonic devices using the CMOS process means chip designers will not have to be specialists to design photonic devices, Wade explained, which will hopefully accelerate the commercialisation of photonic technology.

‘IBM’s CMOS process has already been commercially proven to make high-quality microelectronics products,’ Wade said.

The two devices built by the researchers are key components for the communication link between a computer's central processing unit and its memory. A modulator converts electrical signals into optical signals. A tunable filter can pick out light signals of particular frequencies, allowing it to select a signal from multiple frequencies, each of which carries data. Used in conjunction with a photodetector, the filter converts optical signals to electrical signals.

But according to Wade, the significance of this advancement goes beyond this particular application: ‘This is a really nice first step for silicon photonics to take over some areas of technology where electronics has really dominated and to start building complex electronic/photonic systems that require dense integration.'

Twitter icon
Facebook icon
Google icon
StumbleUpon icon
Digg icon
LinkedIn icon
Reddit icon
e-mail icon
Feature

CableLabs is spearheading efforts to develop a proposal that uses coherent optics to dramatically boost the capacity of hybrid fibre coaxial networks, reports Andy Extance

Feature

Systems vendors are using intelligent software to squeeze more performance from optical networks. Pauline Rigby reports on developments at OFC 2017