New technique to produce next generation photonic chips

Share this on social media:

Researchers from the University of Southampton have developed a new technique to help produce more reliable and robust next generation photonic chips. The high refractive index of silicon makes optical structures the size of a fraction of the diameter of a human hair possible. Squeezing more and more optical structures for light distribution, modulation, detection and routing into smaller chip areas allows for higher data rates at lower fabrication costs. This means that Photonic chips made from silicon will play a major role in future optical networks for worldwide data traffic.

As the complexity of optical chips increases, testing and characterising such chips becomes more difficult. Light traveling in the chip is confined in the silicon, that is, it cannot be ‘seen’ or measured from the outside. 

Southampton researchers have now developed a new method, which will help solve this problem, to find out at which time the light in the chip is at which position. The technique, called Ultrafast photomodulation spectroscopy (UPMS), uses ultraviolet laser pulses of femtosecond duration to change the refractive index of silicon in a tiny area on the photonic chip. 

Non-contact characterisation tools like UPMS are vital for scientist designing complex photonic chips. The UPMS technique is fast and robust and has the potential to be used for industrial testing in the photonics industry. 

Dr Roman Bruck, from Physics and Astronomy at the University of Southampton and lead author of the study, said: ‘Monitoring the transmission of the chip while the refractive index is locally changed gives a precise picture of how the light flows through it. This allows testing of individual optical elements on the chip, a crucial step in the design optimisation to ensure its flawless operation. Because the changes induced by the technique are fully reversible, this testing method is non-destructive and after testing, the chip can be used for its intended application.’ 

The research team, involves Dr Roman Bruck and Otto Muskens from Physics and Astronomy; Graham Reed, Goran Mashanovich, Ben Mills, Youfang Hu, Frederic Gardes, David Thomson from the Optoelectroncs Research Centre; and Vittorio Passaro and Benedetto Troia, affiliated at the Department of Electrical and Information Engineering, Politecnico di Bari, Italy. 

They expect to establish the technique as a standard characterisation tool, making photonic chips under development more reliable and bringing them into the market quicker. 

The work has been funded by the Engineering and Physical Sciences Research Council (EPSRC). It has been recenty published in the last issue of the journal Nature Photonics.

Recent News

24 September 2020

Verizon Media has successfully validated an upgrade from 100GbE QSFP28 optics, to 400GbE QSFP-DD over the same production open line system.

17 August 2020

A team of researchers from University College London (UCL) have achieved a record data transmission speed of 178Tb/s.

12 August 2020

Acacia Communications is sampling new 100G coherent pluggable solutions designed for optimisation in edge and access applications with unamplified links up to 120km.

22 July 2020

U.S. operator, Verizon has completed a successful test in its live fibre network to move 800Gb/s of data on a single wavelength across extreme distances.