Thanks for visiting Fibre Systems.

You're trying to access an editorial feature that is only available to logged in, registered users of Fibre Systems. Registering is completely free, so why not sign up with us?

By registering, as well as being able to browse all content on the site without further interruption, you'll also have the option to receive our magazine (multiple times a year) and our email newsletters.

Researchers demo reduced attenuation in hollow-core fibre by factor of 10

Share this on social media:

Researchers at the Zepler Institute for Photonics and Nanoelectronics at the University of Southampton have demonstrated significantly improved hollow-core fibre performance. They believe this is the next step on this technology’s path to eclipsing current optical fibres. The latest findings were presented recently in San Diego at the annual OFC conference and exhibition.

Hollow-core fibres use gas or a vacuum in favour of traditional cores to enable properties such as faster light speed and reduced sensitivity to environmental variations. The technology is being advanced in the Zepler Institute's Optoelectronics Research Centre (ORC). It is believed able to reach lower loss and higher data transmission capacity than all-solid glass fibres, with current research accelerating models toward this peak performance.

The newest hollow-core fibres attenuate the light traveling through it by 50 per cent less than the previous record, said the researchers. Said previous record was reported just six months ago. The maximum transmission length at which data can be relayed in such revolutionary fibres has also doubled.

Thanks to a new, design proposed at the ORC, in the space of 18 months the attenuation in data-transmitting hollow-core fibres has been reduced by more than a factor of 10, from 3.5dB/km to only 0.28dB/km within a factor of two of the attenuation of conventional all-glass fibre technology. At the same time, the maximum transmission distance at which large bandwidth data streams can be transmitted through an air-core has been improved by more than 10 times, from 75 to 750km.

Professor Francesco Poletti, head of the ORC's hollow core fibre group, explained: ‘Transmitting light in an air core rather than a glass core presents many advantages which could revolutionise optical communications as we know them. These latest results further reduce the performance gap between hollow core fibre and mainstream optical fibre technology, and the whole team is really excited by the prospect of the additional significant improvements that seem possible, according to modelling.’

The improvements in attenuation and transmission distance demonstrated could open up the possibility to target longer reach distances, edging close to the 1,000km span of typical long distance long haul terrestrial data transmission links. The Southampton research team is also pushing the boundaries of hollow-core performance in a number of major research programmes, such as the European Research Council funded LightPipe and the Engineering and Physical Sciences Research Council (EPSRC) funded Airguide Photonics.

Related news

Recent News

09 July 2020

Vodafone New Zealand has selected Ciena to help advance its network with the deployment of 800G technology.

26 June 2020

Infinera, in partnership with network operator, Windstream, has completed a live network trial that achieved 800Gb/s single-wavelength transmission over 730km.

01 June 2020

A team of researchers from RMIT, Monash and Swinburne universities in Australia, has achieved a data speed of 44.2Tb/s from a single light source.

14 May 2020

Deutsche Telekom Global Carrier, the international wholesale unit of Deutsche Telekom, has turned up its European 800G network, connecting its data centres in Vienna.